Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sch9 partially mediates TORC1 signaling to control ribosomal RNA synthesis.

Identifieur interne : 001486 ( Main/Exploration ); précédent : 001485; suivant : 001487

Sch9 partially mediates TORC1 signaling to control ribosomal RNA synthesis.

Auteurs : Yuehua Wei [États-Unis] ; X F Steven Zheng

Source :

RBID : pubmed:19823048

Descripteurs français

English descriptors

Abstract

TORC1 is a central regulator of ribosomal RNA synthesis. Here we report that Sch9 partially mediates TORC1 signaling to regulate Pol I- and Pol III-dependent transcription. Mechanistically, Sch9 is involved in hyperphosphorylation and cytoplasmic localization of Maf1, and for optimal synthesis of rRNAs and tRNAs. Interestingly, sch9Delta does not affect Maf1 basal phosphorylation and nucleolar localization. In addition, TORC1 is still capable of regulating rRNAs and tRNAs in the absence of Sch9. Moreover, the hyperactive Sch9(2D3E) mutant does not confer significant rapamycin resistance in cell growth. Together, these observations indicate that Sch9 is involved in optimal regulation of ribosome biogenesis by TORC1, but is dispensable for the essential aspects of ribosome biogenesis and cell growth, suggesting that TORC1 controls cell growth through Sch9-dependent and independent mechanisms.

DOI: 10.4161/cc.8.24.10170
PubMed: 19823048
PubMed Central: PMC3023923


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sch9 partially mediates TORC1 signaling to control ribosomal RNA synthesis.</title>
<author>
<name sortKey="Wei, Yuehua" sort="Wei, Yuehua" uniqKey="Wei Y" first="Yuehua" last="Wei">Yuehua Wei</name>
<affiliation wicri:level="2">
<nlm:affiliation>Graduate Program in Cellular and Molecular Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Graduate Program in Cellular and Molecular Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zheng, X F Steven" sort="Zheng, X F Steven" uniqKey="Zheng X" first="X F Steven" last="Zheng">X F Steven Zheng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19823048</idno>
<idno type="pmid">19823048</idno>
<idno type="pmc">PMC3023923</idno>
<idno type="doi">10.4161/cc.8.24.10170</idno>
<idno type="wicri:Area/Main/Corpus">001470</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001470</idno>
<idno type="wicri:Area/Main/Curation">001470</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001470</idno>
<idno type="wicri:Area/Main/Exploration">001470</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sch9 partially mediates TORC1 signaling to control ribosomal RNA synthesis.</title>
<author>
<name sortKey="Wei, Yuehua" sort="Wei, Yuehua" uniqKey="Wei Y" first="Yuehua" last="Wei">Yuehua Wei</name>
<affiliation wicri:level="2">
<nlm:affiliation>Graduate Program in Cellular and Molecular Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Graduate Program in Cellular and Molecular Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zheng, X F Steven" sort="Zheng, X F Steven" uniqKey="Zheng X" first="X F Steven" last="Zheng">X F Steven Zheng</name>
</author>
</analytic>
<series>
<title level="j">Cell cycle (Georgetown, Tex.)</title>
<idno type="eISSN">1551-4005</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Fungal (genetics)</term>
<term>Intracellular Signaling Peptides and Proteins (genetics)</term>
<term>Intracellular Signaling Peptides and Proteins (metabolism)</term>
<term>Macromolecular Substances (metabolism)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Mutation (genetics)</term>
<term>Phosphatidylinositol 3-Kinases (genetics)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>RNA Polymerase I (genetics)</term>
<term>RNA, Ribosomal (biosynthesis)</term>
<term>RNA, Transfer (genetics)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (genetics)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcriptional Activation (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN de transfert (génétique)</term>
<term>ARN ribosomique (biosynthèse)</term>
<term>Activation de la transcription (génétique)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Mutation (génétique)</term>
<term>Phosphatidylinositol 3-kinases (génétique)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines et peptides de signalisation intracellulaire (génétique)</term>
<term>Protéines et peptides de signalisation intracellulaire (métabolisme)</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>RNA polymerase I (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (génétique)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Structures macromoléculaires (métabolisme)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>RNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Membrane Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>RNA Polymerase I</term>
<term>RNA, Transfer</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>ARN ribosomique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Mutation</term>
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
<term>Transcriptional Activation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN de transfert</term>
<term>Activation de la transcription</term>
<term>Facteurs de transcription</term>
<term>Mutation</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Protéines membranaires</term>
<term>RNA polymerase I</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Saccharomyces cerevisiae</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Macromolecular Substances</term>
<term>Membrane Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Phosphatidylinositol 3-kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Protéines membranaires</term>
<term>Saccharomyces cerevisiae</term>
<term>Structures macromoléculaires</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">TORC1 is a central regulator of ribosomal RNA synthesis. Here we report that Sch9 partially mediates TORC1 signaling to regulate Pol I- and Pol III-dependent transcription. Mechanistically, Sch9 is involved in hyperphosphorylation and cytoplasmic localization of Maf1, and for optimal synthesis of rRNAs and tRNAs. Interestingly, sch9Delta does not affect Maf1 basal phosphorylation and nucleolar localization. In addition, TORC1 is still capable of regulating rRNAs and tRNAs in the absence of Sch9. Moreover, the hyperactive Sch9(2D3E) mutant does not confer significant rapamycin resistance in cell growth. Together, these observations indicate that Sch9 is involved in optimal regulation of ribosome biogenesis by TORC1, but is dispensable for the essential aspects of ribosome biogenesis and cell growth, suggesting that TORC1 controls cell growth through Sch9-dependent and independent mechanisms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19823048</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>05</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1551-4005</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Cell cycle (Georgetown, Tex.)</Title>
<ISOAbbreviation>Cell Cycle</ISOAbbreviation>
</Journal>
<ArticleTitle>Sch9 partially mediates TORC1 signaling to control ribosomal RNA synthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>4085-90</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>TORC1 is a central regulator of ribosomal RNA synthesis. Here we report that Sch9 partially mediates TORC1 signaling to regulate Pol I- and Pol III-dependent transcription. Mechanistically, Sch9 is involved in hyperphosphorylation and cytoplasmic localization of Maf1, and for optimal synthesis of rRNAs and tRNAs. Interestingly, sch9Delta does not affect Maf1 basal phosphorylation and nucleolar localization. In addition, TORC1 is still capable of regulating rRNAs and tRNAs in the absence of Sch9. Moreover, the hyperactive Sch9(2D3E) mutant does not confer significant rapamycin resistance in cell growth. Together, these observations indicate that Sch9 is involved in optimal regulation of ribosome biogenesis by TORC1, but is dispensable for the essential aspects of ribosome biogenesis and cell growth, suggesting that TORC1 controls cell growth through Sch9-dependent and independent mechanisms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Yuehua</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Graduate Program in Cellular and Molecular Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>X F Steven</ForeName>
<Initials>XF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA123391</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA123391-05</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-CA123391</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell Cycle</MedlineTA>
<NlmUniqueID>101137841</NlmUniqueID>
<ISSNLinking>1551-4005</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047908">Intracellular Signaling Peptides and Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C515118">Kog1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C110280">LST8 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C104954">MAF1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046911">Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-25-9</RegistryNumber>
<NameOfSubstance UI="D012343">RNA, Transfer</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C530964">SCH9 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012318">RNA Polymerase I</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Cell Cycle. 2009 Dec 15;8(24):4023-4</RefSource>
<PMID Version="1">19959933</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Cell Cycle. 2010 Jan 1;9(1):26-7</RefSource>
<PMID Version="1">20016255</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047908" MajorTopicYN="N">Intracellular Signaling Peptides and Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046911" MajorTopicYN="N">Macromolecular Substances</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012318" MajorTopicYN="N">RNA Polymerase I</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012343" MajorTopicYN="N">RNA, Transfer</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015533" MajorTopicYN="N">Transcriptional Activation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19823048</ArticleId>
<ArticleId IdType="pii">10170</ArticleId>
<ArticleId IdType="pmc">PMC3023923</ArticleId>
<ArticleId IdType="mid">NIHMS264238</ArticleId>
<ArticleId IdType="doi">10.4161/cc.8.24.10170</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Nov;27(21):7693-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17785443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 25;320(5875):461-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 20;283(25):17168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 8;284(19):12604-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23(16):1929-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Aug 5;28(15):2220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19574957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Nov 1;18(21):5953-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10545107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 13;292(5515):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Aug;21(15):5031-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11438659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 May 31;109(5):545-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 2;277(31):28127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Dec;10(6):1489-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 2;279(1):772-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14578359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Feb;15(2):946-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Feb 15;18(4):423-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jul 14;82(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7606777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):50-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Jan;6(1):69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15688068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 9;22(5):623-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 9;22(5):633-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15044-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 Jan 1;6(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17245124</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Zheng, X F Steven" sort="Zheng, X F Steven" uniqKey="Zheng X" first="X F Steven" last="Zheng">X F Steven Zheng</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Wei, Yuehua" sort="Wei, Yuehua" uniqKey="Wei Y" first="Yuehua" last="Wei">Yuehua Wei</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001486 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001486 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19823048
   |texte=   Sch9 partially mediates TORC1 signaling to control ribosomal RNA synthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19823048" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020